
CROSSTALK The Journal of Defense Software Engineering 27January 1998

The effects of Y2K problems
are not imagined—many orga-
nizations are already experienc-

ing them, and the threat of litigation
between organizations looms because of
Y2K computer problems. Government
and industry information technology
managers are reacting to the problems
they have already experienced, and now
have data to project the impact if their
systems fail. As a result, many have
accelerated their Y2K efforts.

However, there are good and bad
ways to respond the Y2K problem, as
illustrated by an old story of two
friends who seized an opportunity to
sell watermelons. Several farmers of-
fered to sell them their bumper crop for
the super price of 50 cents per water-
melon. So the friends bought a large
truck and began to sell watermelons
rapidly at 55 cents each. A week later,
after selling many truckloads of melons,
one of the friends said to the other,
“Something has got to change. We’re
losing money.” The other friend re-
plied, “Yes, we are losing money, I’ve
been concerned about that as well.
What we need to do is buy a bigger
truck.”

Such is the Y2K effort: failure to
correctly diagnose and treat Y2K prob-
lems can lead to disaster. Among the
worst responses is to assume that some-

one has or will discover a simple, cheap
solution to the problem, or to miscalcu-
late the severity of the problem. It is
important to note that the methods and
tools fostered from modern improved
processes are providing real solutions
for Y2K problems; however, system
renovation costs account for only a
fraction of total Y2K remediation costs.
As a result, even the most efficient fixes
are not the panacea they might initially
seem to be.

On the other hand, overreaction to
the Y2K issue can also lead to wasteful
mistakes. In the February 1996 issue of
American Programmer, Nicholas
Zvegintzov warns of the dangers of
being scared into jumping on the
wrong bandwagon, since some people
are more concerned about making
money from the Y2K issue than they
are with providing reliable data and the
fastest, safest solutions possible.

The STSC Y2K team agrees, for the
most part, with the foundation for
warnings about unsavory or overhyped
Y2K assertions. Assertions of a Y2K
racket, ruse, or farce have probably
been used by Zvegintzov and others to
curb an overreaction and to reduce
superfluous Y2K activities. The hazard
of such language is that it can lead to
the opposite effect. Care should be

taken that the scope of contingency
actions are not too narrow, become
inert, or that contingency planning is
deferred and not present when needed.
While many may have already become,
or will become, victims of farce, racket,
and ruse elements, many more are in
need of much more Y2K help and do
not even know it. Far more organiza-
tions have victimized themselves by
underestimating the costs, risks, and
difficulties to solve their Y2K problems.

Worldwide Y2K Costs
The Asia Pacific View [1] estimates that
worldwide Y2K fixes will average about
$1.10 per line of code, a conservative
estimate when compared to others.
Table 1 lists the cost breakdown esti-
mates for two studies.

Software Technology Support Cen-
ter (STSC) evaluations of current Air
Force efforts indicate that the cost
breakdowns in Table 1 are fundamen-
tally sound. Because “simple” Y2K fix
techniques are technically easy to ac-
complish, they have generally already
been anticipated and included in the
worldwide Y2K cost estimates. The
projected $600 billion world-wide
conversion cost estimate is difficult to
understand because many costs are not
accounted for.

Year 2000 Problem Fixes:
Don’t Hold Out for a Silver Bullet

Paul Harames
Software Technology Support Center

Despite overwhelming data regarding the year 2000 (Y2K) problem, there are engineers and
laymen who believe the Y2K crises is either overhyped or a sham. Although it is unwise to over-
react to the Y2K problem, many in the computer world mistakenly believe that quick solutions
and improved technologies will somehow save them from the enormous cost and time pressures
associated with Y2K fixes. Although some technologies are producing promising results, no method
eliminates the need to properly assess, test, and implement renovated systems. Some systems may
not need to be fixed at all, but will still require procedure changes and evaluations to assure Y2K
compliance. This article discusses issues associated with the year 2000 and explains why al-
though there may be no true silver bullet, Y2K problems may have a silver lining.

28 CROSSTALK The Journal of Defense Software Engineering January 1998

For example, the Air Force Y2K
compliance cost estimate is $400 mil-
lion, yet funding for this effort is essen-
tially nonexistent. Because Air Force
leadership mandates Y2K compliance
for mission-essential systems ahead of
all other maintenance efforts, the effort
is instead funded from sustainment
funding or included as part of the cur-
rent maintenance workload [2]. The
problem is, maintenance and support
programs require funding expansion to
devise and execute new plans and tests
for the Y2K transition. To set aside
work and squeeze the extra effort in
provides ever-diminishing returns while
postponing other vital work.

The point is that it appears a large
percentage of the $600 billion expendi-
ture will be taken from participating
organizations’ current support funding
and not from new funding initiatives.
The full consequences from pulling
resources from other programs to pay
for Y2K conversion work may generate
costly consequences yet unidentified.
And no one can predict the cost of
litigation, business failures, and other
ripple effects from the eventual mass

failure of interconnected computer
systems. Although the exact return on
investment is unknown for Y2K
projects, it will almost certainly be far
cheaper to fix problems than to ignore
them.1

Simple Fixes Are Not Cure-Alls
There are many Y2K solutions floating
among information technology profes-
sionals, many of which look feasible on
paper but have limited practical appli-
cation. One such solution is espoused
by Peter Errington on pages 25-26 of
this issue of CROSSTALK. It should be
noted that his solution is not original
and has been in use for some time, and
it does work for some computer sys-
tems. Variations of his solution are
evident in sliding window techniques
planned or already used in many Y2K
efforts we have reviewed.

Although Errington limited his
solution to batch-processing computer
systems (a severe limitation in today’s
automation data world), variations of
his technique can and are being more
broadly applied. However, his solution
still retains the following limitations,
which are similar to the limitations of
other simple-looking solutions.
• Although windowing techniques

(similar to Errington’s solution) are
often initially considered, the con-
sensus is that they are adequate in
only a small percentage of cases.

• As mentioned, the process of fixing
program code or data accounts for
only a limited portion of total Y2K
costs. Roughly half of the Y2K ef-
fort occurs during the testing phase
alone—and unfortunately, solutions
like Errington’s often ultimately
require extensive testing. Other
efforts include management con-
cerns, planning, and integration,
which also are outside of the scope
of performing actual Y2K correc-
tions. You cannot ignore, minimize,
or partially complete the other
phases of a Y2K solution without
introducing detrimental risks.

• Job Control Language (JCL) code
usually requires a significant amount
of complexity or elaborate logic

sequences to be useful for most
systems. And even once imple-
mented, such solutions often still do
not adequately address many Y2K
problems.

• The time required to develop ad-
equate JCL solutions increases rap-
idly as the scheme to handle Y2K
differences develops. This drives the
need to design application-specific
resolutions, especially as the level of
the JCL complexity increases. The
difficulty is recognizing the trade-off
(thresholds) of when JCL solutions
are impractical or insufficient.

• JCL is not robust enough to correct
critical problems within databases
and applications. This is usually
because an application’s logic flow
cannot be externalized.

• Major components found in distrib-
uted systems or system interfaces
require complex testing or other
alternatives to gain the assurances
required.

• Additional regression testing is al-
ways needed. These tests need to be
enhanced to assure correct or ad-
equate system performance.

The Testing Phase
Roughly half of Y2K costs are incurred
during the testing phase. Insidious
problems appear while testing many
systems; often, these problems are dis-
covered within applications that were
thought to be fixed or already compli-
ant. Another problem arises when a
system or application that is deter-
mined to be nonessential later turns out
to be essential, and no contingency plan
exists for it.

As every programmer knows, even
minor-looking program changes can
cause unexpected outcomes that are
time consuming to diagnose and fix.
Approaches are being developed that
minimize the scope of unexpected out-
comes (see Don Estes’ summary of
encapsulation strategies on pages 9-10
of this issue); however, thorough testing
is always needed to ensure that the
program and data will perform as ex-
pected when the system clock has been

Open Forum

Suggested (Adapted from The
Gartner Group estimates)
Awareness 6%
Assessment 20%
Renovation 15%
Validation 50%
Implementation 9%

Asia Pacific View
Awareness 1%
Inventory 1%
Project Scoping 4%
Analysis/Design 20%
Modification 20%
Unit Test 25%
Systems Test 15%
Acceptance Test 5%
Impl. Documentation 9%
Project Mgt. (add 25 percent to total
of above effort)

Table 1. Average estimated breakdown of Y2K
project costs.

CROSSTALK The Journal of Defense Software Engineering 29January 1998

set past, and the data aged to, the year
2000.

For example, one organization used
a system database that was developed
with four-digit years, giving manage-
ment unwarranted confidence that the
system was Y2K compliant. When a
test was conducted with the system date
set to the year 2000, the application
could not add any data to the database.
This surprised management and devel-
opers, who were disappointed with the
outcome but appreciated knowing the
truth before the year 2000. Because
testing was performed early, they had
time to obtain an updated version from
the vendor. Still, initially, all were confi-
dent that no Y2K problems existed.
The old notion that “one good test is
worth a thousand expert opinions”
should come to mind under all Y2K
circumstances.

The Y2K Cloud’s Silver Lining
Systems with Y2K problems often need
reengineering as well. The initiation of
the Y2K effort may be a good time to
obtain the information necessary for
improvement. During Y2K efforts,
objective data can usually be obtained
to quantify a system’s future. For ex-
ample, the steps identified in the Soft-
ware Reengineering Assessment Hand-
book [3] generally will clarify or make
apparent the values for reengineering a
system. However, prudence should be
exercised to assure that extra activities
do not dilute the Y2K testing or rem-
edies.

The tools and improved methods
spawned by the Y2K effort can be con-
sidered a healthy dose of medicine
forced upon organizations. These meth-
ods are adopted because of the time
constraints and the magnitude of effort

that must be accomplished. Systems are
undergoing inventory updates, system
and file cleanup, documentation
changes, and improvements to all pro-
cesses to accommodate the Y2K issues.

Much of this work is corrective
surgery, long neglected, or otherwise
not possible. There is renewed focus on
management and management tech-
niques accommodating these efforts.
New tools are used to assure a rapid
and thorough test or renovation of the
processes. The question then follows,
will the use of these improved processes
continue? If not, perhaps the
organization’s Y2K efforts will in the
long run largely be a waste of money.

Conclusion
Easy-looking fixes to Y2K problems
rarely offer significant cost savings. To
shortcut system disciplines or depend
on cure-all solutions is a negligent atti-
tude that can potentially lead to disas-
ter. To believe that a farce, racket, or
ruse exists may cause you to be unreal-
istically satisfied that you are adequately
treating your Y2K problems. Still, over-
doing a Y2K effort is wasteful and may
even be detrimental to a system’s useful
life. Organizations must strive to
achieve and maintain a professional
perspective and to take a balanced ap-
proach on all Y2K issues. ◆

Acknowledgments
I thank Paul Hewitt of the STSC and
Gregory Daich of SAIC (assigned to
the STSC) for their inputs to this ar-
ticle.

About the Author
Paul Harames is the lead of the STSC
reengineering domain. He is an electronic
engineer with over 31 years government

and industrial automa-
tion experience. His
experience includes an
extensive background
in test and evaluation
of radar equipment
and radar target pro-
cesses for air traffic

control and airborne radar systems. He
was an instructor at the Federal Aviation
Administration Academy, teaching and
developing courses for Air Route Termi-
nal Automation systems. More recent
work includes updates of automatic test
equipment (microwave) and development
of personal computer-based automatic
test systems. He has a bachelor’s degree in
solid state physics from Oklahoma City
University.

References
1. Cassell, J., K. Schick, B. Hall, and J.

Phelps, “Time Marches On–Less Than
900 Working Days to January 1, 2000,”
Asia Pacific View (APV), June 28, 1996
(see http://www.gartner.com/forms/
meyr2000.rsp.html).

2. Stevens, Capt. Chris, “The Air Force and
Year 2000,” CROSSTALK, STSC, Hill Air
Force Base, Utah, January 1998, pp. 3-4.

3. “Software Reengineering Assessment
Handbook,” Version 3.0, JLC-HDBK-
SRAH, March 1997 (see http://
www.stsc.hill.af.mil under “Reengineer-
ing”).

Note
1. Some have suggested that there has

been significant savings (millions of
dollars) from retaining two-digit dates.
But what is the point? It is like saying
that going out to eat is affordable be-
cause of a 50 percent-off sale at a cloth-
ing store where purchases were made
earlier. It is irrelevant that millions of
dollars have been saved unless this
money had already been available to
help resolve the Y2K problems.

Year 2000 Problem Fixes: Don’t Hold Out for a Silver Bullet

